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Abstract. This work presents a technique for statistically modeling errors introduced by
reduced-order models. The method employs Gaussian-process regression to construct a map-
ping from a small number of computationally inexpensive ‘error indicators’ to a distribution
over the true error. The variance of this distribution can be interpreted as the (epistemic)
uncertainty introduced by the reduced-order model. To model normed errors, the method em-
ploys existing rigorous error bounds and residual norms as indicators; numerical experiments
show that the method leads to a near-optimal expected effectivity in contrast to typical error
bounds. To model errors in general outputs, the method uses dual-weighted residuals—which
are amenable to uncertainty control—as indicators. Experiments illustrate that correcting
the reduced-order-model output with this surrogate can improve prediction accuracy by an
order of magnitude; this contrasts with existing ‘multifidelity correction’ approaches, which
often fail for reduced-order models and suffer from the curse of dimensionality. The proposed
error surrogates also lead to a notion of ‘probabilistic rigor’, i.e., the surrogate bounds the
error with specified probability.
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1. Introduction

As computing power increases, computational models of engineered systems are being em-
ployed to answer increasingly complex questions that guide decision making, often in time-
critical scenarios. It is becoming essential to rigorously quantify and account for both aleatory
and epistemic uncertainties in these analyses. Typically, the high-fidelity computational model
can be viewed as providing a (costly-to-evaluate) mapping between system inputs (e.g., un-
certain parameters, decision variables) and system outputs (e.g., outcomes, measurable quan-
tities). For example, data assimilation employs collected sensor data (outputs) to update
the distribution of uncertain parameters (inputs) of the model; doing so via Bayesian infer-
ence requires sampling from the posterior distribution, which can entail thousands of forward
model simulations. The computational resources (e.g., weeks on a supercomputer) required
for large-scale simulations preclude such high-fidelity models from being feasibly deployed in
such scenarios.

To avoid this bottleneck, analysts have turned to surrogate models that approximate the
input–output map of the high-fidelity model, yet incur a fraction of their computational
cost. However, to be rigorously incorporated in uncertainty-quantification (UQ) contexts, it
is critical to quantify the additional uncertainty introduced by such an approximation. For
example, Bayesian inference aims to sample from the posterior distribution

(1) P[µ|s̄] ∝ P[µ]P[s̄|µ],
1
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where µ ∈ P ⊂ Rnµ denote system inputs, s̄ ∈ R denotes the measured output,1 P[µ]
represents the prior, and P[s̄|µ] denotes the likelihood function. Typically, the measured
output is modeled as s̄ = s(µ) + ε, where s : P → R denotes the outputs predicted by the
high-fidelity model for inputs µ, and ε is a random variable representing measurement noise.
Sampling from this posterior distribution (e.g., via Markov-chain Monte–Carlo or importance
sampling) is costly, as each sample requires at least one evaluation of the high-fidelity input–
output map µ 7→ s that appears in the likelihood function.

When a surrogate model is employed, the measured output becomes s̄ = ssurr(µ)+δs(µ)+ε,
where ssurr : P → R denotes the output predicted by the surrogate model, and δs : P → R rep-
resents the surrogate-model output error or bias. In this case, posterior sampling requires only
evaluations of the surrogate-model input–output map µ 7→ ssurr—which is computationally
inexpensive—as well as evaluation of the surrogate-model error δs(µ), which is not precisely
known in practice. As such, it can be considered a source of epistemic uncertainty, as it can be
reduced in principle by employing the original high-fidelity model (or a higher fidelity surro-
gate model). The goal of this work is to construct a statistical model of this surrogate-model

error δ̃s(µ) that is 1) cheaply computable, 2) exhibits low variance (i.e., introduces minimal
epistemic uncertainty), and 3) whose distribution can be numerically validated.

Various approaches have been developed for different surrogate models to quantify the sur-
rogate error δs(µ). Surrogate models can be placed into three categories [19]: 1) data fits,
2) lower-fidelity models, and 3) reduced-order models. Data fits employ supervised machine-
learning methods (e.g., Gaussian processes, polynomial interpolation [21]) to directly model
the high-fidelity input–output map. Within this class of surrogates, it is possible to statis-
tically model the error for stochastic-process data fits, as a prediction for inputs µ yields a
mean ssurr(µ) and a mean-zero distribution δs(µ) that can be associated with epistemic un-
certainty. While such models are (unbeatably) fast to query and non-intrusive to implement,2

they suffer from the curse of dimensionality and lack access to the underlying model’s physics,
which can hinder predictive robustness.

Lower-fidelity models simply replace the high-fidelity model with a ‘coarsened’ model ob-
tained by neglecting physics, coarsening the mesh, or employing lower-order finite elements,
for example. While such models remain physics based, they often realize only modest compu-
tational savings. For such problems, ‘multifidelity correction’ methods have been developed,
primarily in the optimization context. These techniques model the mapping µ 7→ δs using a
data-fit surrogate; they either enforce ‘global’ zeroth-order consistency between the corrected
surrogate prediction and the high-fidelity prediction at training points [23, 29, 33, 39, 35], or
‘local’ first- or second-order consistency at trust-region centers [2, 19]. Such approaches tend
to work well when the surrogate-model error exhibits a lower variance than the high-fidelity
response [35] and the input-space dimension is small.

Reduced-order models (ROMs) employ a projection process to reduce the state-space di-
mensionality of the high-fidelity computational model. Although intrusive to implement, such
physics-based surrogates often lead to more significant computational gains than lower-fidelity
models, and higher robustness than data fits. For such models, error analysis has been limited

1This work considers one output for notational simplicity. All concepts can be straightforwardly extended
to multiple outputs. The numerical experiments treat the case of multiple outputs.

2Their construction requires only black-box evaluations of the input–output map of the high-fidelity model.
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ROM data multifidelity ROM +
fits correction ROMES

non–intrusive × X X ×
output-error correction × N/A X X
rigorous error bounds X × × (X)∗

tight error bounds (X)† × × X
* probabilistically rigorous† good effectivity can only be obtained with very intrusive methods.

Table 1. Features of different surrogate models

primarily to computing rigorous a posteriori error bounds ∆s(µ) satisfying |δs(µ)| ≤ ∆s(µ)
[10, 25, 42]. Especially for nonlinear problems, however, these error bounds are often highly
ineffective, i.e., they overestimate the actual error by orders of magnitude [17]. To overcome
this shortcoming and obtain tighter bounds, the ROM must be equipped with complex ma-
chinery that both increases the computational burden [47, 30] and is intrusive to implement
(e.g., reformulate the discretization of the high-fidelity model [45, 48]). Further, rigorous
bounds are not directly useful for uncertainty quantification (UQ) problems, where a statis-
tical error model that is unbiased, has low variance, and is stochastic is more useful. Recent
work [35, Section IV.D] has applied multifidelity correction to ROMs. However, the method
did not succeed because the ROM error is often a highly oscillatory function of the inputs and
therefore typically exhibits a higher variance than the high-fidelity response.

In this paper, we introduce the ROM Error Surrogates (ROMES) method that aims to
combine the utility of multifidelity correction with the computational efficiency and robustness
of reduced-order modeling. Table 1 compares the proposed approach with existing surrogate-
modeling techniques. Similar to the multifidelity-correction approach, we aim to model the
ROM error δs using a data-fit surrogate. However, as directly approximating the mapping
µ 7→ δs is ineffective for ROMs, we instead exploit the following key observation: ROMs
often generate a small number of physics-based, cheaply computable error indicators ρ : P →
Rq that correlate strongly with the true error δs(µ). Examples of indicators include the
residual norm, dual-weighted residuals, and the rigorous error bounds discussed above. To
this end, ROMES approximates the low-dimensional, well-behaved mapping ρ(µ) 7→ δs(µ)
using Gaussian-process regression, which is a stochastic-process data-fit method. Note that
ROMES constitutes a generalization of the multifidelity correction approach, as the inputs
(or features) of the error model can be any user-defined error indicator—they need not be the
system inputs µ. Figure 1 depicts the propagation of information for the proposed method.

In addition to constructing an error surrogate for the system outputs, ROMES can also be
used to construct a statistical model for the norm of the error in the system state. Further,
ROMES can be used to generate error bounds with ‘probabilistic rigor’, i.e., an error bound
that overestimates the error with a specified probability.

Next, Section 2 introduces the problem formulation and provides a general but brief intro-
duction to model reduction. In Section 3, we introduce the ROMES method, including its
objectives, ingredients, and some choices of these ingredients for particular errors. Section 4
briefly summarizes the Gaussian-process kernel method [41] and the relevance vector machine
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Input

µ
Reduced-order model

Output

sred(µ) := s(ured(µ))

Error indicators

ρ(µ)
ROMES

Error surrogates

error ‖̃δu‖(ρ(µ)) or output error δ̃s(ρ(µ))

Figure 1. ROMES method. The output quantities of interest can be ‘cor-
rected’ by adding the ROM error surrogate to the ROM output prediction,

i.e., s(µ) ≈ scorr(µ) := sred(µ) + δ̃s(ρ(µ)).

[44], which are the two machine-learning algorithms we employ to construct the ROMES
surrogates. However, the ROMES methodology does not rely on these two techniques, as
any supervised machine learning algorithm that generates a stochastic process can be used,
as long as it generates a statistical model that meets the important conditions described in
Section 3.1. Section 5 analyses the performance of the method when applied with the reduced-
basis method to solve Poisson’s equation in two dimensions using nine system inputs. The
method is also compared with existing rigorous error bounds for normed errors, and with the
multifidelity correction approach for errors in general system outputs.

For additional information on the reduced-basis method, including the algorithms to gen-
erate the reduced-basis spaces and the computation of error bounds, we refer to the supple-
mentary Section A.

2. Problem formulation

This section details aspects of the high-fidelity and reduced-order models that are important
for the ROMES surrogates. We begin with a formulation of the high-fidelity model in Section
2.1 and the reduced-order model in Section 2.2. Finally, we elaborate on the errors introduced
by the model-reduction process and possible problems with their quantification in Section 2.3.

2.1. High-fidelity model. Consider solving a parameterized systems of equations

(2) r(u;µ) = 0,

where u : P → Rn denotes the state implicitly defined by Eq. (2), µ ∈ P ⊂ Rnµ denotes
the system inputs, and r : Rn × Rnµ → Rn denotes the residual operator. This model is
appropriate for stationary problems, e.g., those arising from the finite-element discretization
of elliptic PDEs. For simplicity, assume we are interested in computing a single output

(3) s(µ) := g(u(µ))

with s : Rnµ → R and g : Rn → R.
When the dimension n of the high-fidelity model is ‘large’, computing the system outputs

s by first solving Eq. (2) and subsequently applying Eq. (3) can be prohibitively expensive.
This is particularly true for many-query problems arising in UQ such as Bayesian inference,
which may require thousands of input–output map evaluations µ 7→ s.

4
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2.2. Reduced-order model. Model-reduction techniques aim to reduce the burden of solv-
ing Eq. (2) by employing a projection process. First, they execute a computationally expensive
offline stage (e.g., solving Eq. (2) for a training set µ ∈ Ptrain ⊂ P) to construct 1) a low-
dimensional trial basis (in matrix form) V ∈ Rn×p with p � n that (hopefully) captures
the behavior of the state u throughout the parameter domain P, and 2) an associated test
basis W ∈ Rn×p. Then, during the computationally inexpensive online stage, these meth-
ods approximately solve Eq. (2) for arbitrary µ ∈ P by searching for solutions in the trial
subspace range (V ) ⊂ Rn and enforcing orthogonality of the residual r to the test subspace
range (W ) ⊂ Rn:

(4) W tr(V û;µ) = 0.

Here, the state is approximated as ured(µ) := V û(µ) and the reduced state û(µ) ∈ Rp is
implicitly defined by Eq. (4). The ROM-predicted output is then sred(µ) := g (ured(µ);µ).

When the residual operator is nonlinear in the state or non-affine in the inputs, additional
complexity-reduction approximations such as empirical interpolation [6, 26], collocation [31,
3, 43], discrete empirical interpolation [16, 22, 18], or gappy proper orthogonal decomposition
(POD) [13, 14] are required to ensure that computing the low-dimensional residualW tr incurs
an n-independent operation count. In this case, the residual is approximated as r̃ ≈ r and
the reduced-order equations become

(5) W tr̃(V û;µ) = 0.

When the output operator is nonlinear and the vector ∂g/∂u is dense, approximations in the
output calculation are also required to ensure an n-independent operation count.

Section A describes in detail the construction of a reduced-order model using the reduced-
basis method applied to a parametrically coercive, affine, linear, elliptic PDE.

2.3. Reduced-order-model error bounds. One is typically interested in quantifying two
types of error incurred by model reduction: the state-space error δu(µ) := u(µ)−ured(µ) ∈ Rn
and the output error δs(µ) := s(µ) − sred(µ) ∈ R. In particular, many ROMs are equipped
with computable, rigorous error bounds for these quantities [37, 24, 36, 11, 17]:

(6) ∆u(µ) ≥ ‖δu(µ)‖ , ∆s(µ) ≥ |δs(µ)|
In cases, where the norm of the residual operator can be estimated tightly, lower bounds also
exist:

(7) ∆LB
u (µ) ≤ ‖δu(µ)‖ , ∆LB

s (µ) ≤ |δs(µ)| .
The performance of an upper bound is usually quantified by its effectivity, i.e., the factor by
which it overestimates the true error

(8) ηu(µ) :=
∆u(µ)

‖δu(µ)‖ ≥ 1, ηs(µ) :=
∆s(µ)

|δs(µ)| ≥ 1.

The closer these values are to 1, the ‘tighter’ the bound. For coercive PDEs, these effectivities
can be controlled by choosing a tight lower bound of the coercivity constant.

While this can be easily accomplished for stationary, linear problems, it is difficult to find
tight lower bounds in almost all other cases. In fact, the resulting bounds often overestimate
the error by orders of magnitude [42, 17]. Because effectivity is critically important in practice,
various efforts have been undertaken to improve the tightness of the bounds. Huynh et

5
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Figure 2. Relationship between RB error bounds ∆u, residual norms
‖r(V û;µ)‖, and the true state-space errors |||δu|||, visualized by evaluation
of 200 random sample points in the input space. Here, |||·||| denotes the energy
norm defined in Section 5.1.

al. [30] developed the successive constraint method for this purpose; the method approximates
the coercivity-constant lower bounds by solving small linear programs online, which depend
on additional expensive offline computations. Alternatively, Refs. [45, 48] reformulate the
entire discretization of time-dependent problems using a space–time method that improves
the error bounds by incorporating solutions to dual problems. Another approach [47] aims to
approximate the coercivity constant by eigenvalue analysis of the reduced system matrices.
These methods all bloat the offline and the online computation time and often incur intrusive
changes to the high-fidelity-model implementation.

Regardless of effectivity, rigorous bounds satisfying inequalities (6) are not directly useful for
quantifying the epistemic uncertainty incurred by employing the ROM. Rather, a statistical
model that reflects our knowledge of these errors would be more appropriate. For such a
model, the mean of the distribution would provide an expected error; the variance would
provide a notion of epistemic uncertainty. The most straightforward way to achieve this would
be to model the error as a uniform probability distribution on an interval whose boundaries
correspond to the lower and upper bounds. Unfortunately, such an approach leads to wide,
uninformative intervals when the bounds suffer from poor effectivity; this will be demonstrated
in the numerical experiments.

Instead, we exploit the following observation: error bounds tend to be strongly correlated
with the true error. Figure 2 depicts this observed structure for a reduced-basis ROM applied
to an elliptic PDE (see Section 5.1 for details). On a logarithmic scale, the true error exhibits
a roughly linear dependence on both the bound and the residual norm, and the variance of the
data is fairly constant. As will be shown in Section 5.3, employing a multifidelity correction
approach wherein the error is modeled as a function of the inputs µ does not work well for
this example, both because the input-space dimension is large (nine) and the error is a highly
oscillatory function of these inputs.

6
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Therefore, we propose constructing a stochastic process that maps such error indicators to
a random variable for the error. For this purpose, we employ Gaussian-process regression.
The approach leverages one strength of ROMs compared to other surrogate models: ROMs
generate strong ‘physics-based’ error indicators (e.g., error bounds) in addition to output
predictions. The next section describes the proposed method.

3. The ROMES method

The objective of the ROMES method is to construct a statistical model of the deterministic,
but generally unknown ROM error δ(µ) with δ : P → R denoting an R-valued error that may
represent the norm of the state-space error ‖δu‖, the output error δs, or its absolute value
|δs|, for example. The distribution of the random variable representing the error should reflect
our (epistemic) uncertainty about its value. We assume that we can employ a set of training
points δ(µn), n = 1, . . . , N to construct this model.

3.1. Statistical model. Define a probability space (Ω,F , P ). We seek to approximate the

deterministic mapping m : µ 7→ d(δ(µ)) by a stochastic mapping m̃ : ρ(µ) 7→ d̃ with d̃ : Ω→ R
a real-valued random variable. Here, d : R→ R is an invertible transformation function (e.g.,
logarithm) that can be specified to facilitate construction of the statistical model. We can

then interpret the statistical model of the error as a random variable δ̃ : ρ 7→ d−1(m̃(ρ)).
Three ingredients must be selected to construct this mapping m̃: 1) the error indicators

ρ, 2) the transformation function d, and 3) the methodology for constructing the statistical
model from the training data. We will make these choices such that the stochastic mapping
satisfies the following conditions:

(1) The indicators ρ(µ) are cheaply computable and low dimensional given any µ ∈ P.
In practice, they should also incur a reasonably small implementation effort, e.g., not
require modifying the underlying high-fidelity model.

(2) The mapping m̃ exhibits low variance, i.e., E
[
(m̃(ρ(µ))− E [m̃(ρ(µ))])2

]
is ‘small’

for all µ ∈ P. This ensures that little additional epistemic uncertainty is introduced.
(3) The mapping m̃ is validated :

(9) ωvalidation (ω) ≈ ω, ∀ω ∈ [0, 1) ,

where ωvalidation (ω) is the frequency with which validation data lie in the ω-confidence
interval predicted by the statistical model

(10) ωvalidation (ω) :=
card ({µ ∈ Pvalidation | d(δ(µ)) ∈ Cω (µ)})

card (Pvalidation)
.

Here, the validation set Pvalidation ⊂ P should not include any of the points µn, n =
1, . . . , N employed to train the error surrogate, and the confidence interval Cω (µ) ⊂ R,
which is centered at the mean of m̃(ρ(µ)), is defined for all µ ∈ P such that

(11) P[m̃(ρ(µ)) ∈ Cω (µ))] = ω.

In essence, validation assesses whether or not the data do indeed behave as random
variables with probability distributions predicted by the statistical model.

7
Preprint submitted to JUQ



M. DROHMANN, K. CARLBERG ROMES METHOD

The next section describes the proposed methodology for selecting indicators ρ and trans-
formation function d. For constructing the mapping m̃ from training points, we will employ
the two supervised machine learning algorithms described in Section 4: the Gaussian process
(GP) kernel method and the relevance vector machine (RVM). Note that these are merely
guidelines for model construction, as there are usually no strong analytical tools to prove that
the mapping behaves according to a certain probability distribution. Therefore, any choice
must be computationally validated according to condition 3 above.

3.2. Choosing indicators and transformation function. The class of multifidelity-correction
algorithms can be cast within the framework proposed in Section 3.1. In particular, when a
stochastic process is used to model additive error, these methods are equivalent to the pro-
posed construction with ingredients δ = δs, ρ = µ, and d = idR with idR(x) = x, ∀x ∈ R the
identity function over R. However, as previously discussed, the mapping µ 7→ δs can be highly
oscillatory and non-smooth for reduced-order models; further, this approach is infeasible for
high-dimensional input spaces, i.e., nµ large. This was shown by Ng and Eldred [35, Section
IV.D]; we also demonstrate this in the numerical experiments of Section 5.3.

Note that all indicators and errors proposed in this section should be scaled (e.g., via linear
transformations) in practice such that they exhibit roughly the same range. This ‘feature
scaling’ task is common in machine-learning and is particularly important when the ROMES
surrogate employs multiple indicators.

3.2.1. Normed and compliant outputs. As discussed in Section 2.3, many ROMs are equipped
with bounds for normed errors. Further, there is often a strong, well-behaved relationship
between such error bounds and the normed error (see Figure 2). In the case of compliant
outputs, the error is always non-negative, i.e., δs = |δs| (see Section A.3), so we can treat this
error as a normed error.

To this end, we propose employing error bounds as indicators for the errors in the compliant
output |δs| and in the state ‖δu‖. However, because the bound effectivity often lies in a
small range (even for a large range of errors) [42], employing a logarithmic transformation is
appropriate. To see this, consider a case where the effectivity η of the error bound, defined as

(12) η(µ) :=
∆(µ)

δ(µ)
≥ 1, ∀µ ∈ P,

lies within a range η1 ≤ η(µ) ≤ η2, ∀µ ∈ P. Then the relationship between the error bound
and the true error is

∆(µ)

η1
≥ δ(µ) ≥ ∆(µ)

η2
(13)

log ∆(µ)− log η1 ≥ log δ(µ) ≥ log ∆(µ)− log η2(14)

for all µ ∈ P. In this case, one would expect an affine model mapping log ∆(µ) to log δ(µ) with
constant Gaussian noise to accurately capture the relationship. So, employing a logarithmic
transformation permits the use of simpler surrogates that assume a constant variance in the
error variable. Therefore, we propose employing ρ = log ∆ and d = log for statistical modeling
of normed errors and compliant outputs.

8
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A less computationally expensive candidate for an indicator is simply the logarithm of the
residual norm ρ = log r, where r is the Euclidean norm of the residual vector

(15) r(µ) := ‖r(V û(µ);µ)‖2 .
For more information on the efficient computation of (15), we refer to Section A.3.1. One
would expect this choice of indicator to produce a similar model to that produced by the
logarithm of the error bound: the error bound is often equal to the residual norm divided by a
(costly-to-compute) coercivity-constant lower bound (see Section A.3). Further, employing the
residual norm leads to a model that is less sensitive to strong variations in this approximated
lower bound.

Returning to the example depicted in Figure 2, the relationship between the error bound
and the energy norm of the state error in log-log space is roughly linear, and the vari-
ance is relatively small. The same is true of the relationship between the (computationally
cheaper) residual norm and the true error. As expected, these relationships can be accu-
rately modeled as a stochastic process with a linear mean function and constant variance
(more details in Section 5.1). Here, strong candidates for ROMES error indicators include
ρ1(µ) := r(µ),ρ2(µ) := ∆(µ), and ρ3(µ) := (r(µ),∆(µ)). In the experiments in Section 5,
we will consider the first choice, which is the least expensive and intrusive option, yet leads
to excellent results. For cases where the data are less well behaved, more error indicators can
be included, e.g., linear combinations of inputs or the output prediction.

Unfortunately, this set of ROMES ingredients is not applicable to errors in general outputs
of interest because the logarithmic transformation function assumes strictly positive errors.
The next section presents a strategy for handling this general case.

Remark 3.1 (Log-Normal distribution). In the case where d = log, the error models δ̃(µ),
µ ∈ P are random variables with log-normal distribution. If one is interested in the most

probable error, one might think to use the expected value of δ̃. However, the maximum of the
probability distribution function of a log-normally distributed random variable is defined by its

mode, which is less than the expected value. We therefore use mode(δ̃) if scalar values for the
estimation of the output error or the reduced state error are required.

3.2.2. General outputs. This section describes the ROMES ingredients we propose for mod-
eling the error δs in a general output s(µ) := g(u(µ)). Dual-weighted-residual approaches
are commonly adopted for approximating general output errors in the context of a posteriori
adaptivity [20, 4, 7, 40, 46, 32], model-reduction adaptivity [12], and model-reduction error
estimation [38, 11, 45, 34]. The latter references compute adjoint solutions in order to improve
the accuracy of ROM output-error bounds. The computation of these adjoint solutions entails
a low-dimensional linear solve; thus, they are efficiently computable and can potentially serve
as error indicators for the ROMES method.

The main idea of dual-weighted-residual error estimation is to approximate the output error
to first-order using the solution to a dual problem. For notational simplicity in this section,
we drop dependence on the inputs µ.

To begin, we approximate the output arising from the (unknown) high-fidelity state u to
first order about the ROM-approximated state V û:

(16) g (u) ≈ g (V û) +
∂g

∂u
(V û) (u− V û)

9
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with g : Rn → R and ∂g
∂u : Rn → R1×n. Similarly, we can approximate the residual to first

order about the approximated state as

(17) 0 = r (u) ≈ r (V û) +
∂r

∂u
(V û) (u− V û) ,

where r : Rn → Rn with ∂r
∂u : Rn → Rn×n. Solving for the error yields

(18) (u− V û) ≈ −
[
∂r

∂u
(V û)

]−1

r (V û) .

Substituting (18) in (16) leads to

(19) g (u)− g (V û) ≈ yTr (V û) ,

where the dual solution y ∈ Rn satisfies

(20)
∂r

∂u

t

(V û)y = − ∂g
∂u

t

(V û) .

Approximation (19) is first-order accurate; therefore, it is exact in the case of linear outputs
and a linear residual operator. In the general nonlinear case, this approximation is accurate
in a neighborhood of the ROM-approximated state V û.

Because we would like to avoid high-dimensional solves, we approximate y as the reduced-
order dual solution yred := Y ŷ ∈ Rn, where ŷ satisfies

(21) Y T ∂r

∂u

t

(V û)Y ŷ = Y T ∂g

∂u

t

(V û) ,

and Y ∈ Rn×py with py � n is a reduced basis (in matrix form) for the dual system. Section
A.3.2 provides details on the construction of Y for elliptic PDEs. Substituting the approxi-
mation yred for y in (19) yields a cheaply computable error estimate

(22) g (u)− g (V û) ≈ ytredr (V û) .

This relationship implies that one can construct an accurate, cheaply computable ROMES
model for general-output error δ = δs = g(u)−g(V û) by employing indicators ρ = ytredr (V û)
and transformation function d = idR the identity function over R.

Remark 3.2 (Uncertainty control for dual-weighted-residual error indicators). The accuracy
of the reduced-order dual solution can be controlled by changing py—the dimension of the
dual basis Y . In general, one would expect an increase in py to lead to a lower-variance
ROMES surrogate at the expense of a higher dimensional dual problem (21). The experiments
in Section 5.6 highlight this uncertainty-control attribute.

3.3. Probabilistically rigorous error bounds. Clearly, the ROMES surrogate does not
strictly bound the error, even when error bounds are used as indicators. That is, the mean
probability of overestimation is generally less than one

(23) c :=
1

|P|

∫

µ∈P
P[m̃(ρ(µ)) > d(δ(µ))]dµ < 1.

10
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This frequency of overestimation depends on the probability distribution of the random
variable m̃(ρ). Using the machine learning methods proposed in the next section, we infer
normally distributed random variables

(24) m̃(ρ) ∼ N (ν(ρ), σ2(ρ))

with mean ν(ρ) and variance σ2(ρ). If the model is perfectly validated, then the mean
probability of overestimation is c = 0.5. However, knowledge about the distribution of the
random variable can be used to control the overestimation frequency. In particular, the
modified surrogate

(25) m̃c(ρ) := m̃(ρ) +mLB(ρ, c)

enables probabilistic rigor : it bounds the error with mean specified probability c assuming the
model is perfectly validated. Here, mLB fulfills

(26) P[X > mLB(ρ, c)] = c, for X ∼ N (0, σ2(ρ)).

This value can be computed as

(27) mLB(ρ) =
√

2σ(ρ)erf−1 (2c− 1)

where erf−1 is the inverse of the error function.

4. Gaussian processes

This section describes the two methods we employ to construct the stochastic mapping
m̃ : ρ(µ) 7→ d̃:

• Gaussian process kernel regression (i.e., kriging) [41] and
• the relevance vector machine (RVM) [44].

Both methods are examples of supervised learning methods that generate a stochastic process
from a set of N training points for independent variables x := (xn)Nn=1 and a dependent vari-
able y := (yn)Nn=1. Using these training data, the methods generate predictions ỹ(x∗m; θML),
m = 1, . . . ,M associated with a set of M prediction points x∗ := (x∗m)Mm=1. Here, θML

denotes hyperparameters that are inferred using a Bayesian approach; the predictions are
random variables with a multivariate normal distribution.

In the context of ROMES, the independent variables correspond to error indicators xn =
ρ(µn) with µn ∈ P, n = 1, . . . , N and the dependent variable corresponds to the (transformed)
reduced-order-model error such that yn = d(δ(µn)), n = 1, . . . , N . To make this paper as self-
contained as possible, the following sections briefly present and compare the two approaches.

4.1. GP kernel method. A Gaussian process is defined as a collection of random variables
such that any finite number of them has a joint Gaussian distribution. The GP kernel method
constructs this Gaussian process via Bayesian inference using the training data and a specified
kernel function. To begin, the prior distribution is set to

(28) ỹprior(x) ∼ N
(
0,K (x,x) + σ2IN+M

)

with x := (xi)
N+M
i=1 = (x,x∗). Here, the GP kernel assumes that the covariance between any

two points can be described analytically by a kernel k with additive noise ε ∼ N (0, σ2IM+N )
11
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such that

(29) K(x,x) =
(
k(xi,xj)

)
1≤i,j≤N+M

.

In this work, we employ the most commonly used squared-exponential-covariance kernel

k(xi,xj) = exp

(
−‖xi − xj‖

2
2

2l2

)
,(30)

which induces high correlation between geometrically nearby points. Here, l ∈ R is the ‘width’
hyperparameter.

Assuming the predictions are generated as independent samples from the stochastic pro-
cess,3 the GP kernel method then generates predictions for each point x∗ ∈ x∗. These predic-
tions correspond to random variables with posterior distributions ỹ(x∗; θ) ∼ N (ν(x∗), σ2(x∗))
with

ν(x∗) = K(x∗,x)
(
K(x,x) + σ2IN

)−1
y(31)

σ2(x∗) = Σ(x∗) + σ2(32)

Σ(x∗) = K(x∗,x∗)−K(x∗,x)
(
K(x,x) + σ2IN

)−1
K(x,x∗).(33)

More details on the derivation of these expressions can be found in Ref. [41, ch 2.2].
The hyperparameters θ := (l2, σ2) can be set to the maximum-likelihood values θML com-

puted as the solution to an optimization problem

(34) θML = arg max
θ
L(θ)

with the log-likelihood function defined as

(35) L(l2, σ2) = −1

2
yt
(
K(x,x; l2) + σ2IN

)−1
y − 1

2
log
∣∣K(x,x; l2) + σ2IN

∣∣− N

2
log 2π.

For details on the derivation of the log likelihood function and problem (34), we refer to
Ref. [41, ch 5.4].

Remark 4.1. The noise component σ2 of posterior covariance σ2(x∗) accounts for uncertainty
in the assumed GP structure. It plays a crucial role for the ROMES method: it accounts
for the non-uniqueness of the mapping ρ 7→ δ, as it is possible for δ(µi) 6= δ(µj) even if
ρ(µi) = ρ(µj). In particular, this noise component represents the ‘information loss’ incurred
by employing the error indicators in lieu of the system inputs as independent variables in the
GP. Therefore, this component can be interpreted as the inherent uncertainty in the error due
to the non-uniqueness of the mapping ρ 7→ δ.

On the other hand, the remaining term Σ(x∗) of the posterior variance quantifies the un-
certainty in the mean prediction. This decreases as the number of training points increases.
Therefore, Σ(x∗) can be interpreted as the uncertainty due to a lack of training data.

For example, the multifidelity-correction approach employs ρ = µ and therefore should
be characterized by σ2 = 0, as the mapping µ 7→ δ is unique. However, due to the high-
dimensional nature of the system-input space P in many problems, the uncertainty due to lack

3Typically in the GP literature, predictions at all points x∗ are generated simultaneously as a single sample
from the Gaussian process. In this work, we treat all predictions as arising from independent samples of the
GP.
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of training Σ(x∗) can be very large unless many training points are employed. On the other
hand, the ROMES method aims to significantly reduce Σ(x∗) by employing a small number of
indicators, albeit at the cost of a nonzero σ2.

In light of this remark, we will employ two different types of ROMES models: one that
includes the uncertainty due to a lack of training data (i.e., variance σ2(x∗)), and one that
neglects this uncertainty (i.e., variance σ2).

4.2. Relevance vector machine (RVM) method. The RVM [44] is based on a para-
meterized discretization of the predictive random variable

(36) ỹ(x) =

K∑

k=1

wkφk(x) + ε = φ(x)tw + ε,

with specified basis functions φ(x) := [φ1(x) · · · φK(x)]t ∈ RK , a corresponding set of ran-

dom variables w := [w1 · · · wK ]t ∈ RK , with wk ∼ N (0, β2
k) for k = 1, . . . ,K and noise

ε ∼ N (0, σ2). The hyperparameters β = [β1 · · · βK ]t ∈ RK define the prior probability
distribution, and are usually chosen by a likelihood maximization over the training samples.
Radial basis functions

(37) φRBFk (x) = exp

(
− 1

r2
‖x̄k − x‖22

)
, k = 1, . . . ,K

constitute the most common choice for basis functions. For the ROMES method, we often ex-
pect a linear relationship between the indicators and true errors, likely with a small-magnitude
high-order-polynomial deviation. Therefore, we also consider Legendre polynomials [1, Ch.8]

(38) φLebk (x) = Pk(x), k = 1, . . . ,K.

Note that both sets of basis functions are dependent on the training data: while the center-
ing points x̄k, k = 1, . . . ,K in the radial basis functions can be chosen arbitrarily, they are
typically chosen to be equal to the training points. The domain of the Legendre polynomials,
on the other hand, is nominally [−1, 1]; therefore the independent variables must be appro-
priately scaled to ensure the range of training and prediction points (x,x∗) is included in this
interval.

The RVM method also employs a Bayesian approach to construct the model from training
data. In particular, the vector of hyperparameters β affects the variance of the Gaussian
random variables w. If these hyperparameters are computed by a maximum-likelihood or a
similar optimization algorithm, large values for these hyperparameters identify insignificant
components that can be removed. Therefore, in the ROMES context, the RVM can be used
to filter out the least significant error indicators. Apart from this detail, the RVM can be
considered a special case of the GP kernel method with kernel

(39) k(xi,xj) =

K∑

k=1

1

βk
φk(xi)φk(xj).

13
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Figure 3. Domain and sample solution u(µ) for the thermal-block problem.

5. Numerical experiments

This section analyzes the performance of the ROMES method on Poisson’s equation with
nine system inputs, using the reduced-basis method to generate the reduced-order model.
First, Section 5.1 introduces the test problem. Section 5.2 discusses implementation and vali-
dation of the ROMES models. Section 5.3 compares the ROMES method to the multifidelity-
correction approach characterized by employing the model inputs as error indicators. Section
5.4 compares the ROMES stochastic error estimate to the error bound given by the reduced-
basis method. Section 5.5 compares the performance of the two machine-learning algorithms:
the Gaussian process kernel method and the relevance vector machine. Finally, Section 5.6
considers non-compliant and multiple output functionals, which ROMES handles via dual-
weighted-residual error indicators.

5.1. Problem setup. Consider a finite-element model of heat transport on a square domain
Ω := ∪9

i=1Ωi composed of nine parameterized materials. The block is cooled along the top
boundary to a reference temperature of zero, a nonzero heat flux is specified on the bottom
boundary, and the leftmost boundary is adiabatic. The compliant output functional for this
problem is defined as the integral over the Neumann domain ΓN1

(40) ḡ(u(µ)) =

∫

ΓN1

u(µ)dx, µ ∈ P,

where the parameter domain is set to P = [0.1, 10]9 and u is the continuous representation of
the finite-element solution. The state variable u(µ) ∈ X = H1

0 :=
{
w ∈ H1(Ω) | w|ΓD

= 0
}

fulfills the weak form of the parameterized Poisson’s equation: find u(µ) ∈ X, such that

(41) a(u(µ), v) = f(v) for all v ∈ X.
Here, the bilinear form a : X ×X → X and the functional f : X → X are defined as

(42) a(u, v) :=

∫

Ω
b(x;µ)∇u(µ) · ∇v dx, f(v) :=

∫

ΓN1

v dx

with boundary conditions

∇b(x;µ)u(µ) · n = 0 on ΓN0 , ∇b(x;µ)u(µ) · n = 1 on ΓN1 .(43)

14
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We define the coefficient function b : Ω× P → R as

(44) b(x;µ) =

9∑

i=1

µi1Ωi (x) ,

where µi denotes the ith component of the parameter vector µ, and the indicator function
1A (x) = 1 if x ∈ A and is zero otherwise. Figure 3 depicts the composition of the domain
and the location of the boundary conditions.

By replacing the infinite-dimensional function spaceX with the (finite) n-dimensional finite-
element space Xh ⊂ X in problem (41), one can compute the parameter-dependent state
function uh(µ) ∈ Xh represented by vectors containing the function’s degrees of freedom
u(µ) ∈ Rn (see Section A.1). In the experiments, the domain is discretized by triangular
finite elements, which results in a finite-element space Xh of dimension n = 104. The high-
fidelity output (in the notation of Section 2.1) is then g(u(µ)) := ḡ(uh(µ)), µ ∈ P.

As described in Section A.4, we employ a greedy algorithm4 to generate a reduced-basis
space Xred ⊂ Xh of dimension p� n. The algorithm employs a training set of 100 randomly
selected points (i.e., card (Pgreedy) = 100 in Section A.4), until the maximum computed error
bound in the training set is less than 1; it stops after p = 11 iterations.

Replacing Xh with Xred in Eq. (41) leads to reduced state functions ured(µ) ∈ Xred for all
µ ∈ P. As before, these solutions can be represented by vectors ured(µ) := V û(µ) ∈ Rn,
where V ∈ Rn×p is the discrete representation of a basis for the function space Xred.

In the following, we analyze two types of error: (i) the energy norm of the state-space error
|||δu||| = |||u− ured||| := a(uh − ured, uh − ured) and (ii) the output error δs = g(uh)− g(ured).
Because the output functional in this case is compliant (i.e., g = f and a is symmetric), the
output error is always non-negative; see Eq. (70) of Section A.3. For more details regarding the
finite-element discretization, the reduced-order-model generation, and error bounds, consult
Section A of the Supplementary Materials.

5.2. ROMES implementation and validation. We first compute ROMES surrogates for
the two errors |||δu||| and (compliant) δs. As proposed in Section 3.2.1, the three ROMES
ingredients we employ are: 1) log-residual-norm error indicators ρ(µ) = log(r(µ)), 2) a loga-
rithmic transformation function d = log, and 3) both the GP kernel and the RVM supervised
machine-learning methods. To train the surrogates, we compute |||δu(µ)|||, δs(µ), and ρ(µ)
for µ ∈ P̄ ⊂ P with card

(
P̄
)

= 2000. The first N = 100 points comprise the ROMES

training set {µ1, . . . ,µN} =: Plearn ⊂ P̄ and the following 1900 points define a validation set
Pvalidation ⊂ P̄; note that the validation set was not used to construct the error surrogates.
Reported results relate to statistics computed over this validation set.

For the kernel method, we employ the squared exponential covariance kernel (30). For
the RVM method, we choose Legendre polynomials Pk as basis functions, as we expect a
linear relationship between the indicators and true errors (see Section 4.2). Because Legendre
polynomials are defined on the interval [−1, 1], we must transform and scale this domain to
span the possible range of indicator values. For this purpose, we apply the heuristic of setting
the domain of the polynomials to be 20% larger than the interval bounded by the smallest

4 All reduced-basis computations are conducted with the reduced-basis library RBMatlab (http://www.
morepas.org/software/).
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Figure 4. Visualization of ROMES surrogates (δ = |||δu||| and ‖δu‖X , ρ =
log r, d = log), computed using N = 100 training points and the (i) GP kernel
method and (ii) RVM.

and largest indicator values:

(45) [ρmin − 0.1(ρmax − ρmin),ρmax + 0.1(ρmax − ρmin)] ,

where ρmin = minµ∈Plearn
ρ(µ) and ρmax = maxµ∈Plearn

ρ(µ). We include Legendre polynomi-
als of orders 0 to 4; however, the RVM method typically discards the higher order polynomials
due to the near-linear relation between indicators and errors.

Figure 4 depicts the ROMES surrogate |̃||δu||| generated by both machine-learning methods

using all 100 training points. For comparison, we also create ROMES surrogates ‖̃δu‖X for
errors in the parameter-independent norm ‖·‖X of the state space X = H1

0 . In addition to
the expected mean of the inferred surrogate, the figure displays two 95%-confidence intervals
for the prediction (see Remark 4.1):

• The darker shaded interval corresponds to the confidence interval arising from the
inherent uncertainty in the error due to the non-uniqueness of the mapping ρ 7→ |||δu|||,
i.e., the inferred variance σ2 of Eq. (32).
• The lighter shaded interval also includes the ‘uncertainty in the mean’ due to a lack of

training data, i.e., Σ of Eq. (32). With an increasing number of training points, this
area should be indistinguishable from the darker one.
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All ROMES models find a linear trend between the indicators and the errors, where the
variance is slightly larger for the parameter-independent norm. This larger variance can be
attributed to the larger range of the coercivity constants the parameter-independent norm
(see Section A.3). For this example, however, both ROMES are functional. In the following
examples, we focus on the energy norm only.

Note that the ‘uncertainty in the mean’ is dominant for the RVM surrogate. This can be
explained as follows: the high-order polynomials have values close to zero near the mean of
the data. As such, the training data are not very informative for the coefficients of these
polynomials. This results in a large inferred variance for those coefficients. Section 5.5 further
compares the two machine-learning methods; due to its superior performance, we now proceed
with the kernel method.

We now assess the validity of the Gaussian-process assumptions underlying the ROMES

surrogates |̃||δu||| and δ̃s, i.e., Condition 3 of Section 3.1. From the discussion in Remark 4.1,
we know if the underlying GP model form is correct, then as the number of training points
increases, the uncertainty about the mean decreases and the set {D(µ) | µ ∈ Pvalidation} with

(46) D(µ) := d (|||δu(µ)|||)− E
[
d
(
|̃||δu|||(ρ(µ))

)]
= d (|||δu(µ)|||)− ν (ρ(µ))

should behave like samples from the distribution N (0, σ2). Figure 5 reports this validation
test and verifies that this condition does indeed hold for a sufficiently large number of training
points.

Further, we can validate the inferred confidence intervals as proposed in Eq. (9). The
table within Figure 5 reports ωvalidation (ω) (see Eq. (10)), which represents the frequency of
observed predictions in the validation set that lie within the inferred confidence interval Cω.
We declare the ROMES model to be validated, as ωvalidation (ω) ≈ ω for several values of ω as
the number of training points increases.

The results for the ROMES surrogate δ̃s are very similar to those presented in Figure
5 and will be further discussed in Section 5.3. Note that the inferred Gaussian process is
well-converged with a moderately sized training set consisting of only N = 35 points.

5.3. Output error: comparison with multifidelity correction. As discussed in Section

3.2, multifidelity-correction methods construct a surrogate δ̃s,MF of the output error using the
system inputs as error-surrogate inputs, i.e., δ = δs, ρ = µ, and d = idR. In this section, we
construct this multifidelity correction surrogate using the same GP kernel method as ROMES.
Ref. [35] demonstrated that this error surrogate fails to improve the ‘corrected output’ when
the low-fidelity model corresponds to a reduced-order model. We now verify this result and

show that—in contrast to the multifidelity correction approach—the ROMES surrogate δ̃s
constructed via the GP kernel method with δ = δs, ρ = log r, and d = log yields impressive
results: on average, the output ‘corrected’ by the ROMES surrogate reduces the error by an
order of magnitude, and the Gaussian-process assumptions can be validated. The validation
quality improves as the number of training points increases, but a moderately sized set of only
N = 20 training points leads to a converged surrogate.

The reason multifidelity correction fails for most reduced-order models is twofold. First, the
mapping µ 7→ δs can be highly oscillatory in the input space. This behavior arises from the
fact the the reduced-order model error is zero at the (greedily-chosen) ROM training points but

17
Preprint submitted to JUQ



M. DROHMANN, K. CARLBERG ROMES METHOD

−
0
.2 0

0
.2

0

5

10

deviation from GP–mean

n
o
rm

a
li
ze
d
ra
te

o
f
o
cc
u
rr
en

ce

N = 10

−
0
.2 0

0
.2

0

2

4

6

8

deviation from GP–mean
n
o
rm

a
li
ze
d
ra
te

o
f
o
cc
u
rr
en

ce

N = 35

−
0
.2 0

0
.2

0

2

4

6

8

deviation from GP–mean

n
o
rm

a
li
ze
d
ra
te

o
f
o
cc
u
rr
en

ce

N = 65

−
0
.2 0

0
.2

0

2

4

6

deviation from GP–mean

n
o
rm

a
li
ze
d
ra
te

o
f
o
cc
u
rr
en

ce

N = 95
Validation frequency ωvalidation (ω)

predicted ω N = 10 N = 35 N = 65 N = 95

0.80 0.49 0.71 0.76 0.78
0.90 0.59 0.82 0.87 0.88
0.95 0.68 0.89 0.92 0.93
0.98 0.76 0.93 0.95 0.96
0.99 0.80 0.94 0.96 0.97

histogram inferred pdf

Figure 5. Gaussian-process validation for the ROMES surrogate (GP kernel,
δ = |||δu|||, ρ = log r, d = log) with a varying number of training points N .
The histogram corresponds to samples of D(µ) and the red curve depicts the
probability distribution function N (0, σ2). The table reports how often the
actual error lies in the inferred confidence intervals.

grows (and can grow quickly) away from these points. Such complex behavior requires a large
number of error-surrogate training points to accurately capture. In addition, the number
of system inputs is often large (in this case nine); this introduces curse-of-dimensionality
difficulties in modeling the error. Figure 6(ii) visualizes this problem. The depicted mapping
between the first two parameter components µ1, µ2 and the output error δs(µ) displays no
structured behavior. As a result, there is no measurable improvement of the corrected output

sred + δ̃s,MF over the evaluation of the ROM output sred alone.
In order to quantify the performance of the error surrogates, we introduce a normalized

expected improvement

(47) I(δ̃,µ) :=

∣∣∣∣∣∣

δs(µ)−mode
(
δ̃(ρ(µ))

)

δs(µ)

∣∣∣∣∣∣
.

If this value is less than one, then the exected corrected output sred + δ̃ is more accurate than
the ROM output sred itself for point µ ∈ P, i.e., the additive error surrogate improves the
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Figure 6. Relationship between (i) ROMES error indicators and the
compliant-output error and (ii) the first two parameter components and the
(compliant) output error, visualized by evaluation of 200 random sample points
in the input space. Clearly, the observed structure in the former relationship
is more amenable to constructing a Gaussian process.

prediction of the ROM. On the other hand, values above one indicate that the error surrogate
worsens the ROM prediction.

Figure 7 reports the mean, median, standard deviations, and extrema for the expected im-
provement (47) evaluated for all validation points Pvalidation and a varying number of training

points. Here, we also compare with the performance of the error surrogate δ̃uni, which is
defined as a uniform distribution on the interval

[
∆LB
s (µ),∆s(µ)

]
, where ∆LB

s (µ) and ∆s(µ)

are the the lower and upper bounds for the output error, respectively. Note that δ̃uni does not
require training data, as it is based purely on error bounds.

The expected improvement for the ROMES output-error surrogate I(δ̃s,µ) as depicted in
Figure 7(i) is approximately 0.2 on average, which constitutes an improvement of nearly an
order of magnitude. Further, the maximum expected improvement almost always remains
below 1; this implies that the corrected ROM output is almost always more accurate than the
ROM output alone.

On the other hand, the expected improvement generated by the error surrogate δ̃uni is
always greater than one, which means that its correction always increases the error. This
arises from the fact that the center of the interval

[
∆LB
s (µ),∆s(µ)

]
is a poor approximation

for the true error.
In addition, Figure 7(ii) shows that the expected improvement produced by the multifidelity-

correction surrogate I
(
δ̃s,MF,µ

)
is often far greater than one. This shows that the multifidelity-

correction approach is not well suited for this problem. Presumably, with (far) more training
points, these results would improve.

Again, we can validate the Gaussian-process assumptions underlying the error surrogates.
For N = 100 training points, Figure 8 compares a histogram of deviation of the true error
from the surrogate mean to the inferred probability density function. The associated table
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Figure 8. Gaussian-process validation for the ROMES surrogate (GP kernel,
compliant δ = δs, ρ = log r, d = log) and multifidelity-correction surrogate
(GP kernel, compliant δ = δs, ρ = µ, and d = idR) using N = 100 training
points The histogram corresponds to samples of D(µ) and the red curve depicts
the probability distribution function N (0, σ2). The table reports how often the
actual error lies in the inferred confidence intervals. Clearly, this validation test
fails for the multilfidelity-correction surrogate.
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reports how often the validation data lie in inferred confidence intervals. We observe that
the confidence intervals are valid for the ROMES surrogate, but are not for the multifidelity-
correction surrogate, as the bins do not align with the inferred distribution. Figure 9 depicts
the convergence of these confidence-interval validation metrics as the number of training points
increases. As expected (see Remark 4.1) the ROMES observed confidence intervals more
closely align with the confidence intervals arising from the inherent uncertainty (i.e., σ2)
as the number of training points increases, as this effectively decreases the uncertainty due
to a lack of training. In addition, only a moderate number of training points (around 20)
is required to generate a reasonably converged ROMES surrogate. On the other hand the
multifidelity-correction surrogate exhibits no such convergence when fewer than 100 training
points are used.
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Figure 9. Gaussian-process validation for the ROMES surrogate (GP kernel,
compliant δ = δs, ρ = log r, d = log) and multifidelity-correction surrogate
(GP kernel, compliant δ = δs, ρ = µ, and d = idR) and a varying number
of training points N . The plots depict how often the actual error lies in the
inferred confidence intervals.

5.4. Reduced-basis error bounds. In this section, we compare the reduced-basis error

bound ∆µ
u (64) with the probabilistically rigorous ROMES surrogates |̃||δu|||

c
(8) with rigor

values of c = 0.5 and c = 0.9 as introduced Section 3.3.5 The ROMES surrogate is constructed
with the GP kernel method and ingredients δ = |||δu|||, ρ = log r, and d = log. As discussed in
Section 2.3 the error-bound effectivity (8) is important to quantify the performance of these
bounds; a value of 1 is optimal, as it implies no over-estimation.

5Note that c = 0.5 implies no modification to the original ROMES surrogate, as |̃||δu|||
0.5

= |̃||δu||| (see
Eqs. (25)–(27)).

21
Preprint submitted to JUQ



M. DROHMANN, K. CARLBERG ROMES METHOD

50 100
0

2

4

6

8

b
o
u
n
d

∆

δ̃
u
n
i

number of training points N

eff
ec

ti
v
it

y
η
(0
.5
,µ

)
50%-rigorous estimate

50 100
0

2

4

6

8

b
o
u
n
d

∆

δ̃
u
n
i

number of training points N

eff
ec

ti
v
it

y
η
(0
.9
,µ

)

90%-rigorous estimate

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

number of training points N

fr
eq

u
en

cy
of

er
-

ro
r

ov
er

es
ti

m
at

io
n

s

20 40 60 80 100
0

0.2

0.4

0.6

0.8

1

number of training points N

fr
eq

u
en

cy
of

er
-

ro
r

ov
er

es
ti

m
a
ti

on
s

mean ± std

median
minimum
maximum

Figure 10. Validation of the probabilistically rigorous ROMES surrogates

|̃||δu|||
c

(GP kernel, δ = |||δu|||, ρ = log r, d = log) and comparison with RB
error upper bound ∆µ

u and uniform distribution based on reduced-basis error

bounds δ̃uni. The top plots compare statistics of the effectivities η(c,µ) with
c = 0.5 and c = 0.9 of the probabilistically rigorous ROMES surrogates with
the RB error-bound surrogates. The bottom plots compare the frequency of
error overestimation cvalidation with the desired value c (red line).

As the probabilistically rigorous ROMES surrogates |̃||δu|||
c

are stochastic processes, we can
measure their (most common) effectivity as

(48) η(c,µ) :=
mode

(
|̃||δu|||

c
(ρ(µ))

)

|||δu(µ)||| .

The top plots of Figure 10 report the mean, median, standard deviation, and extrema of the
effectivities η(0.5,µ) and η(0.9,µ) for all validation points µ ∈ Pvalidation. Again, we compare

with δ̃uni, which is a uniform distribution on an interval whose endpoints correspond to the
lower and upper bounds for the error |||δu(µ)|||. We also compare with the corresponding
statistics for the effectivity of the RB error bound ∆µ

u. The lower bound for the coercivity
constant that is needed in the RB error bound ∆µ

u is chosen as the minimum over all parameter
components αLB(µ) = mini∈{1,...,9} µi. This simple choice is effective because the example is
affinely parameter dependent and linear [37, Ch. 4.2].
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We observe that the ROMES surrogate yields better results than both the error bound ∆µ
u

(which produces effectivities roughly between one and eight) and the uniform distribution δ̃uni

(which produces mode effectivities roughly between one and four). The 50%-rigorous ROMES
surrogate has an almost perfect mean effectivity of 1 as desired. The 90%-rigorous surrogate
has a higher mean effectivity as expected; however, it is only slightly higher. Furthermore,
the effectivities of the ROMES surrogate exhibit a much smaller variance6 than both ∆µ

u

and δ̃uni. Finally, a moderate number (around 20) of training samples is sufficient to obtain
well-converged surrogates.

The bottom plots of Figure 10 report the frequency of error overestimation

(49) cvalidation :=
card ({µ ∈ Pvalidation | median (m̃ (ρ(µ))) > d(δ(µ))})

card (Pvalidation)

for the probabilistically rigorous ROMES surrogates (i.e., m̃ = |̃||δu|||
c
) as the number of train-

ing points increases to show that cvalidation ≈ c, which validates the rate of error overestimation
(see Eq. (23)). Note that the overestimation frequency cvalidation converges to its predicted
value c, which demonstrates that the rigor of the ROMES estimates can in fact be controlled.

5.5. Comparison of machine-learning algorithms. This section compares in detail the
ROMES surrogates generated using the two machine-learning methods introduced in Section
4. Recall that Figure 4 visualizes both surrogates. We observe that both methods work well
overall and generate well-converged surrogates with a modest number of training samples.
As previously mentioned, the GP kernel leads to a smaller inferred variance due to more
accurate and localized estimates of the mean. The RVM is characterized by global basis
functions that preclude it from accurately resolving localized features of the mean and lead to
large uncertainty about the mean (see Figure 4). On the other hand, the confidence intervals
computed with the RVM are (slightly) better validated.

Figure 11(i) and (ii) report the validation test, i.e., the frequency of deviations from the
inferred mean D(µ) (46) with a training sample containing N = 80 training points. We
observe a smaller inferred variance σ2 for the GP kernel method, which implies that the
mean is identified more accurately. In both cases, the validation samples align well with the
probability density function of the inferred distribution N (0, σ2).

The confidence intervals of this inferred distribution can be validated, and they turn out to
be (slightly) more realistic for the RVM method. The table within Figure 11 shows that the
kernel method results are usually optimistic, i.e., the actual confidence intervals are smaller
than predicted. This effect can be corrected, however, by adding Σ(x∗) as an indicator of
the uncertainty of the mean as discussed in Remark 4.1. However, doing so for the RVM
prediction yields extremely wide confidence intervals due to the significant uncertainty about
the RVM mean (see Figure 4).

As the inferred variance is larger for the relevance vector machine, this also affects the per-
formance of effectivity and improvement measures for the error surrogates. Figure 12 depicts
statistics of η(0.5,µ) computed with both the methods, and we observe that all statistical
measures are significantly better for the kernel method estimate.

6The higher variance apparent between 45 and 53 training points can be explained by the fact that the
minimization algorithm for the log–likelihood function stops after it exceeds the maximum number of iterations.
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Figure 11. Gaussian-process validation for the ROMES surrogate using
both the GP kernel method and the RVM (δ = |||δu|||, ρ = log r, d = log) using
N = 80 training points. The histogram corresponds to samples of D(µ) and
the red curve depicts the probability distribution function N (0, σ2). The table
reports how often the actual error lies in the inferred confidence intervals.
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Figure 12. Comparison of the effectivity η(0.5,µ) of ROMES surrogates (δ =
|||δu|||, ρ = log r, d = log) with the GP computed via (i) the GP kernel and (ii)
the relevance vector machine method.

We conclude that while both methods produce feasible ROMES surrogates, the GP kernel
method produces consistently better results. In particular, the lower inferred variance implies
that a lower amount of epistemic uncertainty is introduced by the error surrogate (See con-
dition 2 from Section 3.1). This is critically important for many UQ tasks. Therefore, we
recommend the GP kernel method to construct ROMES surrogates.
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5.5.1. Dependence on reduced-basis size. To assess the generalizability of the ROMES method,
we apply it to a ROM of higher fidelity, i.e., larger p. We construct two ROMES surrogates:

one for the state-space error |̃||δu||| (GP kernel, δ = |||δu|||, ρ = log r, d = log) and one for the

compliant-output error δ̃s (GP kernel, δ = δs, ρ = log r, d = log).
We increase the reduced-basis size by decreasing the maximum error over the training set

from 1.0 to 1.0×10−3 and applying the greedy method. The resulting reduced-basis dimension
is p = 62. Figure 13 reports the error data and ROMES surrogates. Comparing the leftmost
plot of Figure 13 with Figure 4(i) and the rightmost plot of Figure 13 with Figure 6(i) reveals
that while the errors are several orders of magnitude smaller for the current experiments, the
data (and the resulting ROMES surrogates) exhibit roughly the same structure as before.
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Figure 13. Visualization of ROMES surrogates (δ = |||δu||| and δs, ρ = log r,
d = log), computed using N = 100 training points and the GP kernel method
for a higher dimensional ROM with p = 62.

Figure 14 reports the performance of these surrogates. Comparing the leftmost plot of Fig-
ure 14 with Figure 12(i) shows that the state-space error surrogate exhibits nearly identical
convergence for the larger- and smaller-dimension reduced-order models. As in the exper-
iments of Section 5.4, the value of mode (η(0.5,µ)) is close to 1 in the mean. Comparing
the rightmost plot of Figure 14 with Figure 7(i) shows that the expected improvement for the

output-error correction with the surrogate δ̃s is around 0.2 in the mean for both the larger- and
smaller-dimension reduced-order models. However, for the larger-dimension reduced-order
model, more training points are required to reduce the occurrence of improvement factors
larger than 1. This is an artifact of the low errors already produced by the larger-dimension
ROM itself (i.e., small denominator in Eq. (47)).

We therefore conclude that the ROMES method is applicable to ROMs of different fidelity.

5.6. Multiple and non-compliant outputs. Finally, we assess the performance of ROMES
on a model with multiple and non-compliant output functionals as discussed in Section 3.2.2.
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Figure 14. Effectivity η(0.5,µ) of ROMES surrogate (δ = |||δu|||, ρ = log r,

d = log) and expected improvement I(δ̃,µ) of ROMES surrogate (GP kernel,
compliant δ = δs, ρ = log r, d = log) for a higher dimensional ROM with
p = 62 and a varying number of training points N .

For this experiment, we set two outputs to be temperate measurements at points x1 and x2:

si (µ) := gi (u (µ)) := ḡi (u (µ)) =

∫

Ω
δDirac(x− xi)u (xi;µ) dx = u (xi;µ) , i = 1, 2.(50)

where δDirac denotes the Dirac delta function. In this case, we construct a separate ROMES

surrogates for each output error δ̃s1 and δ̃s2 . As previously discussed, we use dual-weighted
residuals as indicators ρi(µ) = yred,i(µ)tr (ured;µ), i = 1, 2 and no transformation d ≡ idR.
This necessitates the computation of approximate dual solutions, for which dual reduced-basis
spaces must be generated in the offline stage. The corresponding finite element problem can
be found in Eq. (78), where Eq. (50) above provides the right-hand sides. The algebraic
problems can be inferred from Eq. (79), where the discrete right-hand sides are canonical unit
vectors because the points x1 and x2 coincide with nodes of the finite-element mesh.

Like the primal reduced basis, the dual counterpart can be generated with a greedy algo-
rithm that minimizes the approximation error for the reduced dual solutions.

To assess the ability for uncertainty control with the dual-weighted-residual indicators (see
Remark 3.2) we generate three dual reduced bases of increasing fidelity: 1) error tolerance of
1 (basis sizes py of 10 and 11), 2) error tolerance of 0.5 (basis sizes py of 15 and 17), 3) error
tolerance of 0.1 (basis sizes py of 20 and 23).

To train the surrogates, we compute δs1(µ), δs2(µ), ρ1(µ) (of varying fidelity), ρ2(µ) (of
varying fidelity), for µ ∈ P̄ ⊂ P with card

(
P̄
)

= 500. The first T = 100 points define the

training set Plearn ⊂ P̄ and the following 400 points constitute the validation set Pvalidation ⊂
P̄.

Figure 15 depicts the observed relationship between indicators ρ1(µ) (of different fidelity)
and the error in the first output δs1(µ). Note that as the dual-basis size py increases, the
output error exhibits a nearly exact linear dependence on the dual-weighted residuals. This

26
Preprint submitted to JUQ



ROMES METHOD M. DROHMANN, K. CARLBERG

−2 −1 0 1 2
·10−2−2

0

2

4

6
·10−2

dual weighted residuals

o
u
tp
u
t
er
ro
r
δ s

1

(i) dual RB size py = 10

−2 0 2 4 6
·10−2−2

0

2

4

6
·10−2

dual weighted residuals

ou
tp
u
t
er
ro
r
δ s

1

(ii) dual RB size py = 15

−2 0 2 4 6
·10−2−2

0

2

4

6
·10−2

dual weighted residuals

o
u
tp
u
t
er
ro
r
δ s

1

(iii) dual RB size=py = 20

Figure 15. Relationship between between dual-weighted-residual indicators
ρ1 = yred,1(µ)tr (ured;µ) and errors in the (non-compliant) first output δs1 .

is expected, as the residual operator is linear in the state. Therefore, the RVM with a linear
polynomial basis produces the best (i.e., minimum variance) results for the ROMES surrogates
in this case.

Figure 16 reflects the necessity of employing a large enough dual reduced basis to compute
the dual-weighted-residual error indicators. For a small dual reduced basis, there is almost no
improvement in the mean, and only a slight improvement in the median; in some cases, the
‘corrected’ outputs are actually less accurate. However, the most accurate dual solutions yield
a mean and median error improvement of two orders of magnitude. This illustrates the ability
and utility of uncertainty control when dual-weighted residuals are used as error indicators.

Table 17 reports validation results for the inferred confidence intervals. While the validation
results are quite good (and appear to be converging to the correct values), they are not as
accurate as those obtained for the compliant output.

6. Conclusions and outlook

This work presented the ROMES method for statistically modeling reduced-order-model
errors. In contrast to rigorous error bounds, such statistical models are useful for tasks
in uncertainty quantification. The method employs supervised machine learning methods to
construct a mapping from existing, cheaply computable ROM error indicators to a distribution
over the true error. This distribution reflects the epistemic uncertainty introduced by the
ROM. We proposed ROMES ingredients (supervised-learning method, error indicators, and
transformation function) that yield low-variance, numerically validated models for different
types of ROM errors.

For normed outputs, the ROMES surrogates led to effectivities with low variance and means
close to the optimal value of one, as well as a notion of probabilistic rigor. This is in contrast to
existing ROM error bounds, which exhibited mean effectivities close to ten; this improvement
will likely be more pronounced for more complex (e.g., nonlinear, time dependent) problems.
Further, the ROMES surrogates were computationally less expensive than the error bounds,
as the coercivity-constant lower bound was not required.

For general outputs, the ROMES surrogate allowed the ROM output to be corrected, which
yielded a near 10x accuracy improvement. Further, the uncertainty in this error could be
controlled by modifying the dimension of the dual reduced basis. On the other hand, existing
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Figure 16. Expected improvement I(δ̃,µ) for ROMES surrogate (RVM,
δ = δs, ρi = yred,i(µ)tr (ured;µ), i = 1, 2, d = idR) for a varying number of
training points T and different dual reduced-basis-space dimensions. Compare
with Figure 7 (1: no improvement, > 1: error worsened, < 1: error improved).

Validation frequency ωvalidation (ω)

first output second output

predicted ω N = 29 N = 53 N = 76 N = 100 N = 29 N = 53 N = 76 N = 100

0.8 1.00 0.83 0.82 0.82 1.00 0.82 0.87 0.88
0.9 1.00 0.87 0.86 0.86 1.00 0.87 0.91 0.92
0.95 1.00 0.89 0.89 0.89 1.00 0.89 0.93 0.93
0.98 1.00 0.90 0.91 0.90 1.00 0.92 0.94 0.95
0.99 1.00 0.92 0.92 0.91 1.00 0.94 0.95 0.96

Figure 17. Gaussian-process validation for the ROMES surrogates (RVM,
δ = δs, ρi = yred,i(µ)tr (ured;µ), i = 1, 2, d = idR). The table reports how
often the actual error lies in the inferred confidence intervals. The largest dual
reduced-basis space dimensions (py = 20 and py = 23) are used to compute
the error indicators. .
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approaches (i.e., multifidelity correction) that employ system inputs (not error indicators) as
inputs to the error model did not lead to improved output predictions. This demonstrated
the ability of ROMES to mitigate the curse of dimensionality: although the problem was
characterized by nine system inputs, only one error indicator was necessary to construct a
low-variance, validated ROMES surrogate.

We foresee the combination of ROMs with ROMES error surrogates to be powerful in
UQ applications, especially when the number of system inputs is large. Future work entails
integrating and analyzing the ROM/ROMES combination for specific UQ problems, e.g.,
Bayesian inference, as well as automating the procedure for selecting ROMES ingredients for
different problems. Future work will also involve integrating the ROMES surrogates into the
greedy algorithm for the reduced-basis-space selection; this has the potential to improve ROM
quality due to the near-optimal expected effectivities of the error surrogates.
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Appendix A. Reduced-basis method for parametric elliptic PDEs with affine
parameter dependence

This section summarizes the reduced-basis method for generating a reduced-order model
for parametric elliptic PDEs with affine parameter dependence. See Ref. [37] for additional
details.

A.1. Parametric elliptic problem. We start with the discretized version of the elliptic
problem, where the state resides in a function space Xh ⊂ X of finite dimension n := dim(Xh),
e.g., a finite-element space. For details on the derivation of such a finite element discretization
from the analytical formulation of an elliptic PDE and its convergence properties, we refer to
Ref. [9].

The problem reads as follows: For any point in the input space µ ∈ P, compute a quantity
of interest

s(µ) := ḡ(uh(µ))(51)

with uh ∈ Xh fulfilling

a(uh(µ), vh;µ) = f(vh;µ) for all vh ∈ Xh.(52)

Here, for all inputs µ ∈ P, a(·, ·;µ) : Xh ×Xh → Xh is a bilinear form on a Hilbert space Xh

and is symmetric, continuous, and coercive, fulfilling

(53) sup
u∈X

sup
v∈X

a(u, v;µ)

‖u‖X ‖v‖X
< γ(µ) <∞ and inf

u∈X,‖u‖X=1
a(u, u;µ) > α(µ)

for constants γ(µ) and α(µ) > 0. In addition, we have f(µ) ∈ X∗h.
29
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Given a basis {ϕi}ni=1 spanning Xh, the solution can be expressed as a linear combination

uh(µ) =
∑n

i=1 ui(µ)ϕi ∈ Xh with the state vector u := [u1 · · · un]t : P → Rn containing the
solution degrees of freedom. Then, problem (52) can be solved algebraically by solving the
system of linear equations

(54) r(u;µ) := A(µ)u(µ)− f(µ) = 0,

with A : P → Rn×n given by Aij(µ) = a (ϕi, ϕj ;µ) and f : P → Rn given by fi(µ) = f(ϕi;µ).
Similarly, the output can be expressed as a function of the state degrees of freedom:

(55) g(u(µ)) := ḡ

(
n∑

i=1

ui(µ)ϕi

)
.

The key concept underlying projection-based model-reduction techniques is to find a lower
dimensional subspace Xred ⊂ Xh of dimension p := dim(Xred) � n, such that (54) can be
solved more efficiently. For the reduced-basis method, this problem-dependent reduced-basis
space is obtained through identification of a few training points Ptrain := {µ̃i}pi=1 ⊂ P for
which the full-order equations (54) are solved. These functions then span the reduced basis
space Xred = span {u(µ̃i)}pi=1 from which we generate an orthonormal basis {ψi}pi=1 . We refer
to subsection A.4 for more details on the selection process of these parameters. Then, these
basis vectors can be expressed in terms of the original finite-element degrees of freedom, i.e.,

(56) ψj =

n∑

i=1

ϕiVij , j = 1, . . . , p.

This transformation provides the entries of the trial basis V . As we consider only Galerkin
projection (due to the symmetric and coercive nature of the PDE), we set W = V , which
leads to a reduced-order problem of the form (4):

(57) V tr(V û;µ) = V tA(µ)V û(µ)− V tf(µ)V = 0.

The reduced quantity of interest is then given by sred = g(V û).

A.2. Offline–online decomposition. The low-dimensional operators in Eq. (57) can be
computed efficiently assuming that the bilinear forms a and the functional f are affinely
parameter dependent, i.e., they can be written as

(58) a(·, ·;µ) =

Qa∑

q=1

σqa(µ)aq(·, ·) and f(·;µ) =

Qf∑

q=1

σqf (µ)f q(·).

with parameter-independent bilinear forms aq : Xh×Xh → Xh, q = 1, . . . , Qa and functionals
f q : Xh → Xh, q = 1, . . . , Qf , and coefficient functions σqa : P → R, q = 1, . . . , Qa and
σqf : P → R, q = 1, . . . , Qf .
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In this affinely parameter dependent case, the parameter-dependent reduced quantities
V tA(µ)V and V tf(µ)V can be quickly assembled via a linear combination of their parameter-
independent components:

V tA(µ)V =

Qa∑

q=1

σqa(µ)V tAqV(59)

V tfV =

Qf∑

q=1

σqf (µ)V tf qV .(60)

Here the matrices Aq ∈ Rn×n, q = 1, . . . , Qa are given by Aq
ij = aq(ϕi, ϕj) and the vectors

f q ∈ Rn, q = 1, . . . , Qf are given by f qi = f(ϕi).
The parameter-independent components

(61) V tAqV ∈ Rp×p, q = 1, . . . , Qa and V tf qV ∈ Rp, q = 1, . . . , Qf

must be computed only once, during the so-called offline stage. All parameter-dependent
computations are carried out in the online stage in an efficient manner, i.e., with computational
complexities that only depend on the reduced-basis dimension p. We refer to Ref. [37] for more
details on the offline/online decomposition. Note that in the non-affine case, low-dimensional
operators can be approximated using the empirical interpolation method [5, 28, 15].

A.3. Error bounds. The state error can be measured either in the problem–dependent en-
ergy norm or in the norm given by the underlying Hilbert space Xh. The energy norm for the
above problem is defined as

(62) |||u||| := a(u, u;µ)

and is equivalent to the Xh-norm

(63) α ‖u‖2Xh
≤ |||u|||2 ≤ γ ‖u‖2Xh

.

The bounds for the state errors ∆µ
u and ∆u for the errors |||δu||| and ‖δu‖Xh

are defined as
follows:

∆µ
u(µ) :=

r(µ)√
αLB(µ)

≥ |||δu(µ)||| and(64)

∆u(µ) :=
r(µ)

αLB(µ)
≥ ‖δu(µ)‖Xh

,(65)

where αLB(µ) ≤ α(µ) is a lower bound for the coercivity constant. This lower bound can
easily computed if the bilinear form a is symmetric and parametrically coercive as defined in
[37, Ch.4.2], i.e., there is a point µ̄ ∈ P, such that

(u, v)Xh
= a(u, v; µ̄),(66)

the parameter independent bilinear forms are coercive

aq(w,w) ≥ 0 ∀µ ∈ P, q = 1, . . . , Qa(67)

and their coefficients strictly positive

σqa(µ) > 0 ∀µ ∈ P, q = 1, . . . , Qa.(68)
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In this special case, the lower coercivity constant can be chosen as

(69) αLB = min
q=1,...,Qa

σqa(µ)

σqa(µ̄)
.

A similar bound can be generated for errors in compliant output functionals ḡ = f (and a
symmetric):

(70) ∆s(µ) :=
r(µ)2

αLB(µ)
≥ δs(µ) := s(µ)− sred(µ) > 0.

Analogously to the upper bounds, lower bounds for the errors can be computed as

∆LB,µ
u (µ) :=

r(µ)√
γUB(µ)

≤ |||δu(µ)|||,(71)

∆LB
u (µ) :=

r(µ)

γUB(µ)
≤ ‖δu(µ)‖Xh

and(72)

∆LB
s (µ) :=

r(µ)2

γUB(µ)
≤ δs(µ).(73)

where γUB ≥ γ is an upper bound for the continuity constant γ.

A.3.1. Offline–online decomposition of the residual norm. In order to compute the error
bounds efficiently, the residual norm r(µ) := ‖r(V û(µ);µ)‖2 must be computed efficiently
through an offline/online decomposition:

(74)

‖r(V û(µ);µ‖22 = (r(V û(µ);µ))tr(V û(µ);µ)

= û(µ)
(
V tAt(µ)A(µ)V

)
û(µ)− 2

(
V tf t(µ)A(µ)V

)
û(µ) +

(
V tf t(µ)f(µ)V

)

=
∑

1≤q,q′≤Qa

σqa(µ)σq
′
a (µ) û(µ)

(
V t (Aq)t Aq′V

)
û(µ)

−2

Qf∑

q=1

Qa∑

q′=1

σqf (µ)σq
′
a (µ)

(
V t (f q)t Aq′V

)
û(µ)

+
∑

1≤q,q′≤Qf

σqf (µ)σq
′

f (µ) +
(
V t (f q)t f q

′
V
)

All low-dimensional and parameter-independent matrices
(
V t (Aq)t Aq′V

)
∈ Rp×p, 1 ≤ q, q′ ≤ Qa(75)

(
V t (f q)t Aq′V

)
∈ Rp, 1 ≤ q, q′ ≤ Qf , Qa(76)

(
V t (f q)t f q

′
V
)
∈ R, 1 ≤ q, q′ ≤ Qf(77)

can be pre-computed during the offline stage.
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A.3.2. Dual weighted error estimates. As discussed in Section 3.2.2, the ROMES surrogate
for modeling errors in general (non-compliant) outputs ḡ requires a dual solution y(µ) ∈ Rn
. In the present context, the associated problem is: Find yh(µ) ∈ Xh fulfilling

(78) a(vh, yh(µ);µ) = −ḡ(vh) for all vh ∈ Xh.

Analogously to the discussion for the primal problem, we require a reduced-basis space X ḡ
red ⊂

Xh for this dual problem. Algebraically, this leads to a reduced-basis matrix Y ∈ Rn×py
associated for a reduced dual solution ŷ ∈ Rpy such that

(79) Y Trg(Y ŷ(µ);µ) = 0, with rg(y;µ) := A(µ)y + g.

Here, g ∈ Rn is given by (g)i = ḡ(ϕi). Then, this error can be bounded as

(80) ∆s(µ) :=
r(µ)rg(µ)

αLB(µ)
≥ |δs(µ)|,

with the dual residual norm rg(µ) := ‖rg(Y ŷ(µ);µ)‖2.

A.4. Basis generation with greedy algorithm. We have so far withheld the mechanism by
which the reduced basis spaces Xred, X

g
red ⊂ Xh are constructed. This section provides a brief

overview on this topic, and to ease exposition, we will focus on the generation of the primal
reduced-basis space only. As previously mentioned, the reduced-basis space is constructed
from p chosen input-space points Ptrain ⊂ P with card (Ptrain) = p. As the reduced-basis
solutions should provide accurate approximations for all points µ ∈ P, the ultimate goal is
to find a reduced-basis space of low dimension p � n that minimizes some distance measure
between itself and the manifold M := {u(µ) | µ ∈ P}. Two possible candidates for such a
distance measure are the maximum projection error

(81) dist1(Xred,M) := max
u∈M

inf
v∈Xred

‖u− v‖

and the maximum reduced state error

(82) dist2(Xred,M) := max
u(µ)∈M

‖u(µ)− ured(µ)‖ .

The optimally achievable distance of a reduced-basis space from the manifoldM is known as
the Kolmogorov N -width and is given by

(83) dN (M) := inf
X̃⊂X,dim(X̃)=N

dist1(X̃,M).

While the Kolmogorov N -width is a theoretical measure and is only known for a few simple
manifolds, it is possible to construct a reduced-basis space with a myopic greedy algorithm
that often comes close to this optimal value. The greedy algorithm works as follows: First,
the manifold of ‘interesting solutions’ is discretized by defining a finite subset Mgreedy :=
{u(µ) |µ ∈ Pgreedy} ⊂ M, with card (Pgreedy) ≥ p for which the distance measures (81) and
(82) can be computed in theory. However, as computing these distance measures exactly
requires knowledge of the full-order solution u, the method substitutes these distance measures
by error bounds maxµ∈Pgreedy

∆u(µ). This allows for the construction of a sequence of reduced-
basis spaces X1 ⊂ X2 ⊂ · · · ⊂ Xp =: Xred by choosing the first subspace arbitrarily, as

(84) X1 = span {u(µ1)}
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with a randomly chosen parameter µ1 ∈ P. Then, the following spaces can be chosen itera-
tively by computing the parameter that maximizes the error bound

(85) µkmax := arg max
µ∈Pgreedy

∆k
u(µ)

and adding the corresponding full-order solution to the reduced basis spaces

(86) Xk+1 = Xk ∪ span
{
u(µkmax)

}
,

where ∆k
u(µ) denotes the bound for model-reduction errors ‖u(µ)− ured(µ)‖ computed using

reduced-basis space Xk. This algorithm works well in practice and has recently been verified
by theoretical convergence results: Refs. [8, 27] proved that the distances of these heuristically
constructed reduced spaces converge at a rate similar to that of the theoretical Kolmogorov
N -width if this N -width converges algebraically or exponentially fast.

In practice, the performance of this greedy algorithm depends strongly on both the effec-
tivity and computational cost of the error bounds, as less expensive error bounds allow for a
larger number of points in Mgreedy. Therefore, we expect that employing the ROMES surro-
gates in lieu of the rigorous bounds may lead to performance gains for the greedy algorithm;
this constitutes an interesting area of future investigation.
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[4] I Babuška and A Miller, The post-processing approach in the finite element method—part 1: Calculation
of displacements, stresses and other higher derivatives of the displacements, International Journal for
numerical methods in engineering, 20 (1984), pp. 1085–1109.

[5] M. Barrault, Y. Maday, N.C. Nguyen, and A.T. Patera, An ‘empirical interpolation’ method:
application to efficient reduced-basis discretization of partial differential equations, C. R. Math. Acad. Sci.
Paris Series I, 339 (2004), pp. 667–672.

[6] M. Barrault, Y. Maday, N. C. Nguyen, and A. T. Patera, An ‘empirical interpolation’ method:
application to efficient reduced-basis discretization of partial differential equations, Comptes Rendus
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